
 Creating Commercial Components

 (Microsoft® COM Components)
•

Technical White Paper

View Contents

Date: February 29, 2000
Revised: July 9, 2001

Authors: Andrew Pharoah, ComponentSource
Chris Brooke, ComponentSource

 Email: publishers@componentsource.com

US Headquarters European Headquarters
 ComponentSource
 3391 Town Point Drive,
Suite 350,
 Kennesaw, GA 30144-7079
 USA

Tel: (770) 250 6100
Fax: (770) 250 6199
International: +1 (770) 250 6100

 ComponentSource
 30 Greyfriars Road,
 Reading,
 Berkshire RG1 1PE
 United Kingdom

Tel: 0118 958 1111
Fax: 0118 958 1111
International: +44 118 958 1111

mailto:publishers@componentsource.com

 Copyright © 1996-2003 ComponentSource

Contents
 Introduction

 Commercial Overview

Component Overview

Identifying A Component Candidate
Analyze Application Functionality
Component Reusability
Expert Functionality

Component Architectures
Client-Side Components
Server-Side Components
Exceptions

Component Types
Visual Components
Non-Visual Components

Component Languages
Visual Basic
Visual C++
Delphi
C++Builder
Other Languages

Designing Commercial COM Components

Component Characteristics
Interfaces
Classes
Registration
Error Handling
Threading Models
Safety

Design Considerations
Identify Component Scope
Choose Architecture

Documenting Commercial COM Components

Documentation Benefits
 Reduction In Pre/Post Sales Support
The Confidence Factor

Typical Documentation
Online Documentation
Demonstrations
Evaluations
Sample Code
Readme Files
Pre-requisites
Dependencies
Compatibility

Deploying Commercial Components

Component Installation
Writing A Script
Protection
Component Verification

Component Testing

Component Licensing
The Common Licensing Problem
C-LIC - The Common Licensing Solution

Conclusion

Prototype Interface

Introduction
This white paper has been constructed to help component authors develop and enhance professional software
 components for delivery on the 'open market'. Information covered in the document is based on our knowledge
 and expertise of those component authors who successfully have established themselves in the component
 marketplace. The content is aimed at developers who wish to create components based on the Microsoft
 Component Object Model (COM). In the following chapter we discuss the business benefits of using
 components and identify the functionality suitable for component development. Following this we detail the
 component architectures and the languages in which components can be written.

Commercial Overview
 The market for Software Components is expected to grow to around $4.4 billion by 2002, $1.0 billion from
 products and $3.4 billion from related services. (Source: PricewaterhouseCoopers)

 Software applications are now created as a collection of software components. For example: Microsoft ® Office
 2000. Increasingly application developers are employing component-based software development techniques,
 which enable them to reduce their time to market and improve their software quality. Software authors who are
 experts in a specific horizontal or vertical market sector are now "componentizing" their applications to meet the
 increasing demand for sophisticated business components. As such this represents a huge opportunity for you
 to unlock hidden revenues from years of research and development.

Why is buying a software component a good idea?

 Everybody, software developers included, admit that they do something, (write a program or subroutine), better
 second time around. This is the essence of a "component", built and continuously improved by an expert or
 organization and encapsulating business logic or technical functionality. By buying a component a developer
 can add functionality to their application without sacrificing quality. Indeed quality should improve, as the
 component will have gone through several development iterations and include feedback from 1,000's of users.

What type of components will people buy?

 Initially software components were used to provide technical functionality, such as SMTP for email or enhanced
 user interfaces. Developers are now requesting sophisticated components that solve real business issues from
 component authors.

 What is helping make this happen now?

 The open Microsoft Component Object Model (COM), Transaction Server (MTS) and Message Queue (MSMQ)
 standards have allowed component authors to focus on creating components rather than spending time on
 building complex proprietary "application framework environments" that "lock-in" users. These standards from
 Microsoft provide "services for components" and give the user a scaleable and secure deployment environment
 for his/her component based application. Plus - components can now be easily built using standard
 development languages like Microsoft Visual Basic ®, Visual C++ or Delphi.

 To find out how to create components from your existing applications or as part of your next software
 development project - read the remainder of this white paper. Many varied technical topics are covered and this
 paper gives a "best practice" guide to commercial component creation in a Microsoft COM based environment.

Component Overview
Identifying A Component Candidate
How do I identify a component candidate? - Understanding how a component works and how
 functionality differs from applications is important when identifying a suitable component
 candidate. In this section we investigate existing applications for potential functionality, consider
 component reusability and finally discuss the importance of business knowledge and how this
 applies to the components you write.

a) Analyze Application Functionality
 Developers should look at the functions encapsulated in their own applications and others to
 assess the commercial viability of componentizing particular functions. One of the main
 characteristics of a component is that the business logic is separate from the data. However, this
 does not apply to single parameter data that is passed to a methods interface. If you are creating
 a component it's important to manipulate data in arbitrary collections or streams. Typical
 examples include Visual Basic property bags and XML documents. (Read the 'White Paper' by
 Jim Parsons on separating data from programming and business logic) A typical example would
 be Microsoft's ADO component. This allows application developers to specify any ODBC
 compliant data source such as SQL server or Oracle, connect to the data source and then
 manipulate the data through an arbitrary recordset. The component was never programmed to
 know what data source to connect to or the type of data inside the recordset. This characteristic
 ensures the component is viable for any developer wishing to handle data located in an ODBC
 compliant database.

b) Component Reusability
 An important factor worth considering is a products commercial viability. Market demand
 determines whether a component is commercially viable or should be used only within your own
 organization. Typical examples include components that are directly linked to hardware such as
 monitoring components for alarm systems. Unless the components can be sold separately from
 the hardware the ability to sell the product online is greatly reduced.

 Components that can be integrated without any consultation will succeed in what's known as the
 'Open Market'. This market allows components to be distributed without any consultation or
 tailoring service. All information regarding the product is supplied in online documentation such
 as demonstrations, evaluations, help files and sample code.

 For more information on the open market browse to:
http://www.componentsource.com/services/cbdiopen_market.asp

c) Expert Functionality
 Expertise and knowledge are the two areas you should focus on when writing a software
 component. If you are developing a component from scratch then consider the components
 already on the market and assess whether you could offer a different or superior solution. Where
 possible write components that are related to your core business area. It's likely that these
 functions will be more valuable than peripheral functionality designed to provide a basic solution.
 For example, if your core business provides insurance underwriting services then concentrate on
 these core functions first as opposed to peripheral components such as a basic user interface
 components for data presentation in a grid or as a chart of graph.

 Component Architectures
Where are components installed? - Components, unlike applications are deployed in either a
 client or sever environment. Where they are deployed can depend on the functionality the
 component is intended to provide. Historically, GUI or visual components were designed to run
 on the client and were of little use in an environment where servers run without screens.
 However, the forthcoming .NET Framework and its related services have introduced a new
 paradigm: Server-side User Interface components. We discuss these types of components more
 in depth in the following section. For the purposes of this discussion, though, the important thing

http://www.componentsource.com/services/cbdiopen_market.asp

 to remember is that components without a visual interface can run on either the client OR server
 machines, although this may be dependent on the usage of the component and other aspects
 defined below.

a) Client-Side Components
Client-side components can be implemented in a variety of ways depending on the functionality
 required. Their overall characteristic is that all logic is encapsulated and run on the client as
 opposed to a server that may serve many clients. Another factor unique to client-side
 components is licensing. Depending on complexity, client-side components may be restricted
 with user run-time licenses. Due to the nature of a client component it is possible that unique
 licenses are required per client machine. Client-side components can be implemented in the form
 of Presentation, Technical and Business components. Examples of each are detailed in the topic
 'Component Types'.

b) Server-Side Components
Server-side components are relatively new to the component market. Benefits enable the
 developer to provide solutions that run on a per server basis. These components serve many
 clients simultaneously without significant performance loss. Server-side components can also be
 upgraded efficiently removing the complexities of updating potentially thousands of desktop
 machines. Component logic is often run on powerful servers as opposed to a desktop machine.
 This makes the server-side component an excellent candidate for systems that require efficient
 throughput and performance.

c) Server-Side User Interface Components
Once available, the .NET Framework will allow developers to build server-side user interface
 components. These components can be designed to run on either a web server - via Web Forms,
 or on an application server - via Win Forms. In both cases the component itself resides on the
 server, enabling it to take advantage of increased resources, scalability, and fault tolerance.
 Whether you choose to develop Win32 distributed applications or Active Server Pages+ web
 applications, or both, the .NET Framework will allow you to integrate a rich user interface via
 server-side components.

d) Exceptions
Where possible you should design components in either a client or server architecture. However,
 there are a few components that are exceptions to the two definitions above. Typical examples
 include components that have a user interface that run in an client environment and are tightly
 coupled to components that run in a server environment e.g. stock/trading systems. These
 architectures exist for security reasons only i.e. the server component will only communicate with
 a specific client component and the client component will only communicate to a specific server
 component.

Component Types
What types of component are there? - Two main types of component exist - visual and non-visual
 components. Included in the visual components category are server-side UI components and
 client-side components. Both visual and non-visual components can encapsulate either technical
 or business knowledge. The differences between the two are dependent on functionality. For
 example if the component provides only a benefit to the developer e.g. a TCP/IP communication
 library then the component is categorized as technical. Business components provide a benefit to
 the developer and end-user by encapsulating business knowledge. Typical examples include
 address formatting and credit card validation components. Both visual and non-visual
 components have their benefits and in the following topics we will look at different examples of
 both in a client and server based environment.

a) Visual Components
COM Visual Components provide a pre-designed presentation interface to the user. Examples
 include data grids and charting components. These components are traditionally known as
 ActiveX Controls or OCXs. Visual components appear graphically in a component toolbox in

 languages such as Visual Basic and Delphi. These allow the developer to select and physically
 draw the component onto a form and then manipulate properties via a design interface known as
 a property page. Another characteristic is that component functionality is run on the desktop
 machine as opposed to a powerful server. Because of this visual components are relatively
 lightweight on processing power. Visual components also provide developer licensing built in.
 This prevents users from copying the component into a development environment and using it at
 design-time. Developer licenses come as a file that must be on the users system in order for the
 component to work correctly.

 Client-Side Example - Janus GridEX is an example of a 'visual' component that
 can run on either client or server based environments. The data grid provides the
 ability for binding, sorting and grouping data visually in the format of Microsoft's
 Outlook grid. The component has been configured for use in stand-alone
 applications and Internet browsers. Unlike client-side components that are pre-
installed on desktop machines, server-side 'visual' components reside on Web
 servers and are either automatically downloaded to client browsers on demand or
 they automatically download the dynamically created content.

Server- Side Example - Chart - FX Internet Edition 2000 by Software FX is an
 example of a server-side component that dynamically generates content sending it
 to a client. Dynamic charts and image maps are created on the server and the sent
 to the client as either image files or as a bitstream directly to the browser client.
 Server-side components include additional features such as 'Safe for Scripting' and
 'Safe for Initialization' properties. These properties protect component functionality
 from malicious use within a Web page. Without these features the component will
 not be browser (server-side) compliant. This subject is covered in greater detail in
 the chapter 'Deploying Commercial COM Components'.

b) Non-Visual Components
Non-visual components do not provide a pre-designed presentation interface to the user. These
 components are traditionally known as ActiveX DLLs and only contain functionality exposed to
 the developer through the programming interface. Unlike visual components this interface is not
 visible through a property page but is available on the standard COM interface. (The COM
 interface is explained later in 'Designing COM components') Non-visual components are
 adaptable and can be run in either client or server environments. This allows the functionality to
 be plugged into any n-tier architecture providing the application developer with a universal
 solution. Non-visual components do not appear graphically in a component toolbox and do not
 require a license file for development. However, this security implication is protected by free
 software provided by ComponentSource. Non-visual components designed to run in a server
 environment allow many clients to access functionality simultaneously without loss in
 performance. Typical examples include online housekeeping functions that require the dedicated
 processing power of a server.

 Client and Server Based Example - Address 2000 is an example of a 'non-visual'
 component that can run in either a client or server environment. The component
 corrects address layouts to any national postal format in over 200 countries -
 particularly useful for mailing applications. The component is configured with two
 main features that allow its functionality to run in a server-based environment as
 well as a desktop machine. Firstly the component is apartment threaded, which is
 'virtual' multi-threading. This enables multiple clients to access component
 functionality on more than one process thread. Without this, each client would have
 to wait until each process terminated by other clients. This subject is covered in
 greater detail in the chapter 'Designing Commercial COM Components'. The
 component's second feature is Microsoft Transaction Server (MTS) compliance. A
 scaleable 'Enterprise' solution should include MTS transaction calls within each
 function. MTS incorporates more efficiencies and transaction handling within a
 server-side component. This feature is particularly important for components that
 run in mission critical environments - e.g. banking and insurance systems. Non-
visual server components that include these features will run on a client machine
 without MTS installed. The only difference is that all transaction handling is ignored.

Component Languages
What language do I use? - Practically any. Many development environments support the COM
 architecture. In addition to this, those environments that do not support COM tend to be bundled
 with wizards that wrap the compiled code inside a COM interface. In the following topics we look
 at the mainstream development tools currently used to build COM components.

a) Visual Basic
Visual Basic is the most widely used language for creating software components. This
 environment provides all the functionality required for developing and compiling an ActiveX DLL,
 ActiveX EXE or ActiveX Control (OCX) Visual Basic is a language that is easy to use and
 excellent for rapid development. Because of this developers can use the language for prototyping
 even if the component is finally written in another language.One of the considerations about
 using Visual Basic is the need to deploy VB runtime files. These have to be installed on the users
 system for the component to function properly. A clear understanding of what and when to install
 these files is covered later on in the topic 'Installation and Registration'. Visual Basic does come
 with the option to compress these files into to Cabinet files (.CAB) - similar to mini installation
 routines. More information on cabinet file is covered in the chapter 'Deploying COM
 Components'.

b) Visual C++
Visual C++ offers greater speed of execution over Visual Basic. Visual C++ should be used to
 implement components that are executed on a constant basis. This advantage is apparent only
 when Visual Basic components contain large amounts of functionality. However, this
 performance issue may be removed depending on the type of component you write. For instance
 if your component provides data access then it's likely many of the functions would be delegated
 to a data handling component such as Microsoft's ActiveX Data Object (ADO).The fact that C++
 integrates tightly with the main operating system is the main reason for this improved efficiency.
 Compiling a DLL in C++ can limit the users ability to interface with the component. If you want to
 create a component with a COM interface then this can be accomplished by using the Active
 Template Library (ATL).You can use ATL in conjunction with the interface definition language
 (IDL) to define each function's public interface. This is interpreted by the wizards in C++ to
 compile a COM wrapped DLL. ATL components can be compiled as 'Minimum Size' or 'Minimum
 Dependency'. 'Minimum Size' requires only one ATL library whereas a component compiled as
 'Minimum Dependency', although larger in size, is stand-alone and has no dependencies.

c) Delphi
 Borland Delphi provides the rapid prototyping and development capabilities of Visual Basic along
 with the execution speeds of C++, using Object Pascal as the underlying programming language.
 Delphi provides a robust COM framework and wizards for creating a variety of COM components.
 In particular, the wizard for creating ActiveX controls enables you to automatically encapsulate
 one of Delphi native Visual Component Library (VCL) controls with an ActiveX control wrapper.
 While it's possible to write ActiveX controls from scratch, a la Visual C++, it's not recommended
 except for the most expert of COM developers. Borland choose this route of making ActiveX
 controls easy to create from VCL control but difficult to create from scratch in order to preserve
 their customer base's investment in VCL controls and also on the assumption that VCL controls
 are much easier to write than their ActiveX counterparts. You will generally find that COM
 components that use VCL are much larger in file size than those developed in Visual C++. This is
 primarily due to the fact that Delphi links rather large portions of VCL into the resulting executable
 file. If you wish for a smaller executable file, Delphi supports the Visual Basic style of deployment,
 which involves compiling with runtime package support and supplying the Borland runtime
 package(s) to your component end users. For interface design, Delphi provides a unique Type
 Library Editor that allows you to visually design your COM objects without having to manually
 write IDL code.

d) C++Builder
 Delphi and Borland C++Builder are nearly identical tools, except for the fact that C++Builder uses
 C++ as its underlying language as opposed to Delphi's Object Pascal. While COM components
 are created in C++Builder using the same wizards and tools as found in Delphi, the framework

 used by C++Builder to implement COM components is very different. Rather than rely on Delphi's
 VCL-based framework for COM components, which does not leverage the power of the C++
 language, C++Builder employs a framework build around Microsoft's ATL. This framework
 enables the C++Builder COM wizard and IDE support. For ActiveX control creation, C++Builder
 also steers you toward creating your ActiveX controls by basing them on VCL controls, and the
 underlying C++ framework provides the connective tissue between the worlds of COM and VCL
 to produce the ActiveX control. Like Delphi, C++Builder also provides the option to compile with
 or without package for executable size efficiency. C++Builder also provides options for statically
 or dynamically linking with the C runtime library (CRTL) for further executable size efficiency.

e) Other Languages
Nowadays components can be written in any language. These often include facilities to
 incorporate the COM architecture into the component. Non-Microsoft languages supporting COM
 include traditional languages such as Merant MicroFocus COBOL.

Designing Commercial Components
Component Characteristics
Do components technically differ from applications? - There are various characteristics that
 differentiate components from applications. The following topics explore the component interface,
 the Windows registry, component error handling, threading models and the safety aspects of
 Web-based components. Developing components is not dissimilar from developing applications.
 An understanding of the fundamental differences will help you convert functionality in stand-alone
 applications and build new components from scratch.

a) Interfaces
 Microsoft's Component Object Model uses interfaces to expose the behavior of COM
 components to the outside world. You can think of an interface as a list of functions supported by
 the component. The functions contained in an interface can be methods, property get or put
 functions, or even events, as described below.

 Methods - Methods are similar to functions found in traditional applications. They
 contain code that can be utilized by the calling application. Components
 encapsulate methods that are public or private. This allows the component author
 to provide developers with entry methods only, removing any confusion as to which
 methods can be used.

Properties - Properties are abstract concepts that enable the developer to work
 with data elements of an interface as if they were data members on an object. In
 reality, properties are generally represented in COM as two methods: one to get a
 property value and one to set, or put, the value (or perhaps just a get method in the
 case of a read only property). Therefore you could, for example, create a property
 called "Name" on the interface, which would result in the creation of get and put
 functions. However, from a developer's standpoint they will simply use the property
 by name in most cases and be unaware of the underlying implementation details.
 Once a component is instantiated its properties are persisted until the instance is
 terminated by the parent application. This allows the properties to be changed
 either by the parent application or internally by methods or events. In the case of
 ActiveX controls, property values are usually persisted between design-time and
 runtime sessions.

Events - Events can be used to provide status information on a methods progress.
 Event methods in COM are contained in a separate interface from other normal
 methods and property getters and putters. In most development tools, the handling
 of events on ActiveX controls is automatic. In Visual Basic the handling of events
 on other kinds of COM objects is possible if the component is initialized to include
 'events' information. In most other tools, events are handled by creating a helper
 class which handles the event interface. Once an event is fired, the calling

 application will receive the notification in the form of a method call, and it can
 handle the situation as appropriate.

COM components can consist of multiple interfaces, and interfaces can also be inherited from one
 another.

When a new interface is created, a 128-bit number called a Globally Unique Identifier (GUID) is
 created to correspond to the interface. GUIDS are often called Interface Identifiers (IIDs) when
 used with interfaces. Because every GUID is globally unique, every interface in COM has its own
 unique IID. By using IIDs only as the internal mechanism to identify interfaces, COM mitigates the
 potential problems of naming clashes and interface versioning. When a new version of an
 interface is released, it should have a new name and a new IID.

b) Classes
 Classes in COM (also known as coclasses) are somewhat analogous to classes as you would
 know them in an object-oriented language. A class in COM is the abstract entity that identifies the
 type of the COM object. Think of the class as the object type and the COM object the
 implementation of that type. One or more interface is associated with each class, as interfaces
 are the only way to work with COM objects - classes on their own provide no means of access
 from the outside world.

c) Registration
 Due of the granular nature of components many hundreds can exist on a system at any one time.
 Therefore to keep track of all these components, the Windows registry is used to store each
 component under a Class ID. This enables a development language to query which components
 are on the system and which can be used in development. The Class ID is a globally unique
 identifier (GUID) that ensures each component is unique within the system. Information on a
 component is stored in the Windows registry by 'registering' the component either
 programmatically or with RegSvr32.exe as shown below.

Example: RegSvr32 C:\MyProject\Bin\Example.dll

 On registration a ProgID is created which is a readable name for the complex ClassID. This
 makes finding a component in the registry a lot easier. In addition to the ProgID other details are
 also included under each ClassID. These include component version, threading model and most
 importantly the physical location of the component on disk.

d) Error Handling
 Handling errors in a component is not the same as handling application errors. Firstly, you need
 to consider that any error not handled in a component will be raised to the client that called the
 method. For that reason, you must ensure that the information the client receives is meaningful.
 A client interface should be totally unaware that a component may be running a process.
 Therefore any error that occurs should be handled by the client and interpreted in such a way
 that any error message displayed is generated by the client and is in context with the process
 that has failed. Below are the main techniques for handling errors in a software component.

 Handling Errors Internally - Handling errors within a component is no different to
 handling errors in a standard application. If a method unexpectedly generates an
 error then unless an error handling routine is included, the calling application will
 crash as well as the component. To avoid this situation, intercept the error, assess
 its severity and take corrective action, either by resuming to a specific line of code
 or returning a recognizable error code to the calling function.

Passing Errors Back to the Client - To return an error back to the calling client
 you must raise an error. You can raise an error by invoking the raise (or equivalent)
 method in the error object of your chosen language. Raising an error will allow you
 to return a number and error description back to the client. Alternatively ensure that
 you either set a public error property or error parameter on the methods interface
 before exiting the method. This will allow the client to interrogate the error property
 or parameter and take appropriate action.

Raising Errors from Error Handlers - The majority of methods and properties you
 write will contain error handler routines. Where an error handler receives an
 unexpected error then returning a generic 'unexpected error' description will not
 help the client find a solution. A good practice is to return the methods name that
 failed and the parameters that were passed to it. This information can then be
 passed back to the component author for investigation.

Handling Errors from Another Component - If your component references a third
 party component then you must handle all errors (known or unknown) that the
 secondary component may generate. Developers using your component may have
 no knowledge of the dependencies your component references. Because of this,
 you must not raise these errors to your client application.

e) Threading Models
 With the advent of more server-based components the need to compile a component with a
 suitable threading standard becomes increasingly important under a multi-user environment. The
 following list describes the threading models available for COM components.

 Single - The entire COM server runs in a single thread. This makes programming
 easy because data does not need to be protected from synchronous access, but it
 can hamper performance, since every method call is serialized into the COM
 server. When you create a single-threaded component run in a multi-user
 environment (or single user environment where multiple threads will be accessing
 the component), the performance at the client end can be extremely slow. On a
 client the user must wait until the client (or thread) in front has terminated its
 component connection. In a multi-user environment single threaded components
 are created per user. Because the server is constantly creating multiple instances
 all carried in memory the performance of the server can eventually grind to a halt,
 as all the available memory resources are used.

 Apartment, also known as Single Threaded Apartment (STA) - Each COM object
 executes within the context of its own thread, and multiple instances of the same
 type of COM object can execute within separate apartments. Because of this, any
 data that is shared between object instances (such as global variables) must be
 protected by thread synchronization objects when appropriate.

Free, also known as Multithreaded Apartment (MTA) - A client can call a method of
 an object on any thread within that apartment at any time. This means that the
 COM object must protect even its own instance data from simultaneous access by
 multiple threads.

 Both - A hybrid of Apartment and Free that provides the calling efficiency of the
 Free threading model but the callback efficiency of Apartment. This is done by
 ensuring that callbacks from the server to the client are serialized on a single
 thread. If a component marked as both (or MTA) is created from a STA, it is
 created in a new apartment with a new thread. If created from an MTA, it joins the
 MTA with its own thread. Creating a component as 'Both' requires extra work on
 the part of the developer to code in his own synchronization.

Components created in Visual Basic can only be Single or Apartment (STA). In order to created
 components that are free threaded or 'both' threaded you must use a lower level language such
 as C++, Visual C++, Delphi, and C++Builder.

f) Safety
 Safety is an important factor when writing components for Web development. Unlike components
 written for traditional environments, developing components extended for use in Web pages
 requires the setting of two safety properties - 'Safe for Scripting' and 'Safe for Initialization'.

 Safe for Scripting - Marking components 'Safe for Scripting' prevents applications

 or components accessing functions that could create, change or delete arbitrary
 files or change system settings.

Safe for Initialization - Marking components 'Safe for Initialization' prevents
 applications or components from providing initialization data that could create,
 change or delete arbitrary files or change system settings.

The following details the potential hazards of releasing a component that is not 'Safe for Scripting'
 or 'Safe for Initialization'.

• Exposure of private information on the local computer or network
• Modification or destruction of information on the local computer or network
• Faulting of the control and the potential crashing of the browser
• Consumption of excessive time or resources such as memory
• Execution of potentially damaging system calls, including execution of files
• Use of the control in a deceptive manner and causing unexpected results

Information on deploying a 'safe' downloadable component is covered in the chapter 'Deploying
 COM Components'.

Design Considerations
How do I develop a software component? - Before writing a component you should analyze the
 functionality and architecture first. In this section we discuss components functional boundaries,
 assess where a component will physically run and how to implement an extensible interface.
 Considering these elements will prevent the inclusion of unnecessary functions and provide a
 focused solution for developers.

a) Identify Component Scope
 It is important when designing a component to identify the functionality that should be included
 and the functionality that is best incorporated into another component. A component should allow
 a developer to integrate a precise solution as opposed to one that provides features over and
 above a basic requirement. For example, designing a business component that provides
 addressing services could include various functions such as address deduplication, post coding
 and address formatting. In this example the three functions are mutually exclusive and should be
 implemented separately.

 However, if the component was an address deduplication component that incorporated extended
 functionality e.g. off-line batch deduplication then this functionality should be included. It is
 possible to create one component that can be sold at three different levels. By using the
 ComponentSource licensing technology (C-LIC), it is possible to block extended functionality.
 This allows authors to publish one component but sell a separate standard, professional and
 enterprise edition.

 Defining component scope will help ensure a component does not become monolithic and mimic
 an application without an interface. Unbundling functionality into separate components will
 prevent the component from becoming over complex and difficult to maintain. The advent of
 online purchasing and the removal of packaging and shipping costs has meant there no longer is
 a need to bundle disparate functionality into one component or to market several components in
 one suite. Removal of this traditional cost implication will allow authors to publish highly focussed
 discrete components and provide customers a wider choice.

b) Choose Architecture
 Choosing architecture will depend on the functionality the component will provide. As discussed
 earlier in the chapter 'Component Overview' client components are often visual in some respect
 such as grids, charting and toolbar components. However, non-visual components may fall into
 this category if the functionality is 'lightweight' and does not severely impact the processor, typical
 examples include file encryption and communication components. If the component functionality
 can be used in a multi-user environment then consider developing a scaleable server based
 component. This should be compiled either apartment or multi-threaded and preferably MTS
 enabled for scalability and transaction handling.

 Installing components in a server environment is less time consuming than having to install a
 component on several client machines. The improved performance and upgradeability benefit
 that server components offer is reflected in the price and provides component authors with an
 opportunity to generate revenues based on a server architecture. Server based components will
 provide the backbone to future Application Service Providers (ASP) and consequently developing
 server components now, will position you for the future growth in this market.

c) Prototype Interface
 Prototyping a component interface can be a useful exercise and will help determine the
 complexity of integrating the component into an application. Component integration should be a
 relatively quick process. If the interface has hundreds of public properties, methods and events
 then it's probably too complex and will confuse users and generate support issues. A technique,
 which can help prevent this problem, is to write the help file before implementation. This will help
 you detail a functional specification and pinpoint any areas that could be consolidated or
 improved upon.

Documenting Commercial Components
Documentation Benefits
a) Reduction in Pre/Post Sales Support
 Documentation for components sold in the open market is particular important as 'face to face'
 interaction does not take place between author and customer. Providing a comprehensive set of
 documentation will ensure that pre/post sales support is kept to a minimum. Providing pre sales
 documentation i.e. a thorough component specification prevents many of the refund situations
 common in traditional 'box product' channels.

 Traditional channels sell product by providing marketing information but not the finer detail
 covered in help files and other technical documentation. Providing information such as help files
 and evaluations enables customers to make an 'informed' purchase decision. Documenting and
 publishing known issues such as Frequently Asked Questions (FAQ's) on a regular basis will also
 help reduce technical support after the sale.

b) The Confidence Factor
 Components sold on the open market are 'Black Box' i.e. the source code is hidden. Because of
 this, trust is extremely important between customer and author. Therefore, provision of detailed
 product information such as evaluations, help files and white papers is essential for building
 confidence in potential customers.

Typical Documentation
What documentation should I provide? - The following section provides a detailed insight into the
 different types of documentation that should be provided when selling components in a
 commercial market. For examples of presenting online documentation in a concise and
 professional style browse our top selling products.

a) Online Documentation (HTML, HLP and PDF Files)
 HTML is probably the best format of documentation you can provide and can be used for
 displaying information in text and graphical format. Typical examples include product overviews
 with screen shots and/or related diagrams. Customer can view HTML instantly as opposed to
 other document formats that must be downloaded first. A new format recently introduced for
 online help files (CHM) This provides the same search facility as traditional help files but in
 HTML. Writing a help file is relatively easy and can be achieved using help authoring tools. More
 information on these tools can be found on our Web site: Help Authoring Tools.

 Portable Data Files (PDF) are documents that can be viewed on IBM compatible or MAC
 platforms. The PDF file enables the creation of technical documentation in a 'book' format.
 Therefore, converting a published manual into an electronic form is probably the most efficient

http://www.componentsource.com/stats.asp
http://www.componentsource.com/stats.asp
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX
http://www.componentsource.com/Browse.asp?G=3&GroupCode=HELPA&MTC=XXX

 way to achieve this. The drawback with PDF files is the requirement of a proprietary viewer that
 must be downloaded first. To write a PDF file you will need to download the Adobe PDF Writer.

b) Demonstrations
 Developing a product demonstration can prove a valuable asset in the documentation you
 provide customers. Exposing component functions will help users understand the benefits of the
 product as a component-based solution. Demonstrations are compiled applications assembled
 with the component. They are not like evaluations that allow developers to use the component in
 a development environment. More information on evaluations is covered in the following topic.

 The objective of a demonstration is to educate users on the functionality incorporated inside the
 component. The interface should demonstrate the main functions in a format that is
 understandable for all customers. Because of this it's important to remove industry jargon and
 acronyms that may confuse users. For data bound components, providing the option of entering
 a DSN (Data Source Name) could be of benefit. This allows users to connect to internal data
 sources in their own organization and apply meaningful data in context with the component.

 Demonstrations often reference dependencies and therefore testing the demonstration on a
 clean machine is extremely important. Clean systems contain freshly installed operating systems
 removing the potential hazards of previously loaded software. If your demonstration references
 any dependencies then you must create an installation kit. Sometimes it's beneficial to include
 the demonstrations within the evaluation kit and thus remove the need to write and maintain two
 separate kits.

 Finally, the quality of a demonstration is directly correlated to the quality of the final retail product.
 Where possible, design your demonstration in-line with an accepted standard e.g. Microsoft
 standards. This helps build a perception of quality and trust with customers - remember
 demonstrations can make or break a sale.

 For more information on Microsoft standards browse to our Resource Library.

c) Evaluations
 Component authors recognize evaluations will help secure a product sale. Once a customer is
 happy with a specification they often trial the component to check the component will actually
 provide the functionality they are looking for. Customers do not doubt component based
 development, but may have concerns with an 'independent' solution, because of this component
 evaluations are essential. Unlike applications, component evaluations add value and play a
 significant role in the pre sales process.

 Writing an evaluation will require consideration into security. Producing a component that
 displays a reminder screen or setting time limits hidden in cryptic keys within the registry are just
 some of the techniques currently used. Setting a 5-10 day trial period for technical components
 and 10-30 days for complex business components is recommended. This gives the customer
 enough time to evaluate the product and make a decision whether to buy.

 An ideal evaluation is the full retail restricted by a security feature detailed above. This prevents
 users having to download the evaluation and retail component separately. ComponentSource
 has developed a license protection facility called C-LIC primarily designed to protect evaluations
 that can be unlocked into full retail products. C-LIC displays a reminder screen requesting the
 user to enter a license key provided when the full retail is purchased. More information on C-LIC
 is covered in the topic 'Deploying COM Components'.

d) Sample Code
 Sample code is particularly useful when developers need to prototype and assess component
 functionality. A good technique is to provide the sample code used in the component
 demonstration. If possible, this should be provided in a basic, intermediate and advanced
 version. This will allow the developer to grasp how the demonstration was developed and it's
 stages of advancement throughout its development cycle.

 The provision of sample code for environments such as Visual Basic, Visual C++, Delphi etc will

http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm
http://www.adobe.com/supportservice/custsupport/LIBRARY/acpwin.htm
http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books
http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books

 ensure more developers are aware of compatibility with their chosen environment and that your
 focused on providing the best solution possible. If you only show VB samples, then only VB
 developers will buy the component. In this scenario a Delphi programmer may believe support is
 not available for Delphi users. The more development environments you support with sample
 code will improve the product's perception and boost sales.

 Sample code usually is the final step that customers evaluate before making a decision whether
 to buy. Therefore its important to maintain a good perception by commenting all code and
 explaining exactly what happens and why. The quality of sample code will directly correlate to the
 quality of your final product. Because of this professionally written sample code using correct
 naming conventions, coding structures and error handling is essential. If the sample code is well
 structured then it can be reused in actual projects. This makes the whole process of integration
 far less complex and useful for developer's who need to rapidly assemble a component-based
 solution.

 For more information on Microsoft standards browse to our Resource Library.

e) Readme Files
 In this topic we list the various information that a Readme file should contain. Most installation
 scripts provide users with an opportunity to view a Readme file for last minute changes or errata
 information once installation is complete. These files should be written in a universal file format
 i.e. a text (TXT) file or HTML file. This prevents users having to own proprietary applications such
 as Microsoft Word to view the file. The following list provides an insight into the various
 information supplied in component Readme files.

 Products Changes - this section is extremely important and should note all the
 functional changes that have been made in comparison to previous versions and
 any changes to documentation, installation etc.

Bug Fixing - bugs resolved from previous versions should be fully documented.
 Include the component version that contained the bug and a description of what
 has changed. This is particularly important if the component's interface has been
 changed.

System Requirements - Although compatibility information is supplied in our own
 sales documentation its worth reiterating this information in your Readme file. This
 should include information such as operating system for deployment, safety levels,
 threading standards etc.

Service Pack Installation - You should define any services packs that were
 applied when compiling the component. This often is the reason for components
 failing to run in a user's development environment.

Definitions of Component Filenames - Listing the filenames of all components
 (including dependencies) is particularly useful if the user is attempting to identify a
 problem. Although help and dependency files include this information, Readme files
 are often browsed as well.

Detailed Installation Notes - This should include information on how to de-install
 and update previous versions. A troubleshooting section should also be included
 defining solutions to common installation problems.

Notes on Sample Projects - Document any assumptions, known issues etc. If
 possible, describe each of the projects and the functions they expose. In addition to
 this defining a project's complexity i.e. basic, intermediate or advanced can also be
 of help.

Distribution Information - Particularly useful when a user creates an installation
 kit. Your component may reference many other dependencies, therefore detailing
 this information will help the developer create a tailored installation kit and prevent

http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books
http://www.componentsource.com/Services/ResourceLibrary.asp?Type=Books

 many of the 'missing dependency' issues when testing.

Known Issues - You must document all known issues. If possible, also explain why
 the problem arises. If you do not provide this information then it's likely that
 unnecessary technical support issues will arise. Documenting known issues will
 demonstrate that you care and are focussed on providing a future solution.

f) Pre-requisites
 Pre-requisites provides the customer with details on required software, product size, required
 memory, service packs where appropriate and publicly available DLLs such as Microsoft's
 ActiveX Data Objects (ADO) It is worth including the minimum and recommended size when
 defining memory and hard disk allocation.

g) Dependencies
 Dependency files such as Microsoft's .DEP file provide the file information that a component
 references at runtime. This may include details on which files to register, where each file should
 be installed and also a URL defining the download location for each .CAB file that the dependent
 file is reliant on. This URL is particularly useful when your customers create their own installation
 kit.

 Microsoft's Package and Deployment wizard provides functionality to interrogate a component
 .DEP file, locate the relevant URL and download the correct .CAB file for inclusion within the
 installation kit. This prevents versioning problems that may arise from integrating independent
 components that may also reference other dependencies.

 Installation tools such as Microsoft's Package and Deployment wizard allow the creation of
 dependency files. Below is an example of a typical .DEP file.

; Dependency file for setup wizards.:
 [Version]
 Version=6.0.81.69
 ; Dependencies for MSRdo20.dll

 ; Default Dependencies --

 [MSRdo20.dll]
 Dest=$(WinSysPath)
 Register=$(DLLSelfRegister)
 Version=6.0.81.69
 Uses1=rdocurs.dll
 Uses2=ComCat.dll
 Uses3=odbc32.dll
 Uses4=
 CABFileName=MSRdo20.cab
 CABDefaultURL=http://activex.microsoft.com/controls/vb6
 CABINFFile=MSRdo20.inf

 [ComCat.dll]
 Dest=$(WinSysPathSysFile)
 Register=$(DLLSelfRegister)
 [rdocurs.dll]
 Dest=$(WinSysPath)
 CABFileName=MSRdo20.cab
 CABDefaultURL=http://activex.microsoft.com/controls/vb6
 CABINFFile=MSRdo20.inf

h) Compatibility
 The following topic looks at the compatibility aspects of a software component. Publishing your
 product on www.componentsource.com will require a comprehensive specification of the
 component's compatibility. The product submission form that we ask you to complete covers the
 eight areas detailed below.

 Operating System for Development - This section covers the different operating
 systems that your component can run on. The component may run on Windows 98
 and Windows NT however this does not mean that it runs on Windows 2000. Unix
 is another example of an operating system that exists in many flavors such as
 Solaris, HPUX and Aix. Because of this, testing component functionality before

 labeling an operating system 'compatible' is essential. Any future technical issues
 that arise due to operating system compatibility will require support.

Architecture of Product - The architecture of a component defines the type of
 system the component is compatible with. For instance, developers maintaining
 legacy systems may find it especially important to know a component is '16 bit' as
 opposed to '32 bit'. The fact a component can run in a '16 bit' environment such as
 Windows 3.1 may be the reason a customer decides to purchase. Another factor
 worth considering is consistency. If you label your component '32 bit' then do not
 check Microsoft Access 2.0 or Microsoft Visual Basic 3.0 as compatible as these
 are 16 bit products!

Tool Type - This section defines your software as an application tool, component,
 add-in etc. Again, selecting the tool type will be directly related to the containers the
 component can be used in.

Component Type - Defining the component type is particularly important when
 filtering our product catalog for co-branded sites. Your component will be receiving
 exposure in different filtered catalogs aimed at specific audiences - there is little
 point in marketing a VCL (a Delphi only component) to Microsoft Visual Basic
 audience. Consider each of the types listed - defining a component as a DLL does
 not define the component with a COM interface. In this particular case the
 component would not be published on a co-branded site such as Microsoft unless it
 was labeled as a COM Object/ActiveX DLL/In-Process Server.

Built Using - Stating the framework that a component is built with is especially
 useful when establishing if the component will run correctly in a design time
 environment. For example, a Microsoft Visual Basic 6.0 component may not work
 in a Visual Basic 5.0 environment due to the absence of MSVBVM60.dll. This does
 not mean the component is not compatible but provides the developer with
 information on the basic run-time libraries required for the component to run.

Compatible Containers - This section defines each development environment in
 which the component can be used. Mark only those environments that you have
 tested and can support your component in. Completing this section will make you
 eligible for different marketing initiatives and inclusion into catalogs targeted at
 specific audiences such as 'ActiveX' or 'Delphi' users.

General - This section includes options not easily categorized. Digital signatures,
 compatibility, scalability and support for apartment model threading are just some
 of the options that may require inclusion.

 Year 2000 Compliance - If the component includes a date function or is anyway
 related to file storage then test for Year 2000 issues. Although components such as
 calendar controls are the obvious candidates the application tools can also be
 eligible for such tests. Tools that compile files such as help authoring tools and
 installation wizards must state Year 2000 compliance - either 'Yes', 'No' or 'Not
 Relevant'.

Deploying Commercial Components
 In the following chapter we discuss component installation, followed by discussions on testing and component
 licensing.

Component Installation
How do I install a component? - Installing a component into a system requires more than just
 copying files into directories on disk. In fact most of the rules and techniques that apply when
 installing an application apply to the installation of a component. In the following section we

 discuss the topics of writing installation scripts, protecting a component from illegal or malicious
 use and the implications of digitally signing components for use on the Internet.

a) Writing a Script
 Creating an installation package is one of the final tasks to complete hen creating a component
 for commercial reuse. Packaging a software component is no different to any other software
 application. Nowadays most installations tools come packaged with wizards to help you
 throughout the process of creating a professional setup kit. There are a number of installation
 tools available for creating setup kits. More information on these tools can be found on our Web
 site: Installation Tools

 Registering your component and dependent files is extremely important - incorrect registration is
 the most common cause for damaging a users system. Most installation tools are incorporated
 with the facility to select how the setup kit will replace a file. All component files contain a version
 number. This number has greater priority that the file date and therefore analyzing the date only
 at installation will not suffice. Some files are dependent on each other such as OLE. OLE
 requires three files (Ole32.dll, Oleaut32.dll and Olepro32.dll) to be installed each with the same
 file version. Therefore it's important to write an installation kit on a clean machine otherwise any
 mismatches on your system will be included in the setup kit and installed onto the end users
 system. By using a clean system will ensure that any dependencies missing will surface when
 testing the kit. Updating the installation script with missing files, re-compiling and re-testing will
 ensure the setup kit safely deploys files to users systems.

b) Protection
 In this topic we discuss how to protect a component from illegal and malicious use. Protecting a
 component from illegal use applies to both visual and non-visual components. However,
 protecting a component from malicious use only applies to components intended for download
 into an Internet browser. Malicious use is where a component can be scripted to harm an end-
users system, and because of this certain protection procedures should be applied.

Illegal Use - Nowadays, customers expect one download that runs in evaluation
 mode for a set number of days. Once this evaluation has expired, functionality is
 disabled until a license key is purchased and entered, unlocking the component
 into a full retail version. The best form of license protection is to use a reminder
 screen that appears each time the parent application calls the component. This
 prevents users without a license from releasing an application into a commercial
 environment.

• Date Expiry - How long would it take to evaluate your product? This
 should be short for non-complex GUI/Technical components 5 to 10
 days and longer for complex Technical/Business components - 30
 days max.

• Reminder Screens - Where the protection is a warning that 'pops
 up' every time an application is run that is built with the evaluation.

• Limited Functionality - This is not popular with customers, as they
 cannot fully evaluate the functionality.

Malicious use - Setting the safety levels of a component can be implemented one
 of two ways. The easiest and most common method is using Microsoft's package
 deployment wizard. The second option, although more complicated, is to
 incorporate the IObjectSafety interface within component code. This is particularly
 useful for protecting specific functions within the component. The following details
 both methods for incorporating safety features inside a component for use in
 Internet browsers.

• Using the Package and Deployment Wizard - The wizard can be
 launched as a stand-alone application or from the Visual Basic Add-in

http://www.componentsource.com/Browse.asp?G=3&GroupCode=INST&MTC=XXX%20
http://www.componentsource.com/Browse.asp?G=3&GroupCode=INST&MTC=XXX%20

 Manager. The wizard takes you through the process of creating a
 cabinet (CAB) file. Once the project and dependent run-time files are
 defined you can set the safety levels for each component listed.

• Using IObjectSafety - This interface exposes functionality to
 Internet browser 'Safe for Initialization' and 'Safe for Scripting'
 security features. The advantage of the IObjectSafety interface is that
 you can protect specific functions within the component unlike the
 Package and Deployment wizard that protects all functions selected
 as Safe for Initialization and Safe for Scripting.

c) Component Verification
 Digital signatures are used if you are developing a component that will be downloaded on the
 Internet. This allows the user to verify that a file they download is identical to the file released by
 the component author. This check is to ensure that the file is from a reputable source. Below is
 the procedure for digitally signing a component.

 Sign Component - Any software that is available for download will require a digital
 signature. If the component is not signed then by default Internet Explorers will
 refuse to download the file. Digitally signing a component identifies who is legally
 responsible for any 'system destruction' at the point the file is downloaded or run.
 You can package your component and its dependent files into a cabinet (CAB) file.
 Although separate files can be signed, CAB files allow you to incorporate many
 files under one digital signature. Files that can be digitally signed are: -

• DLL (Dynamic Link Library)
• EXE (Executable file)
• CAB (Cabinet file)
• OCX (Ole Control eXtension file)

Verify Safety Level - Components used in Internet browsers can be run with a pre-
defined script. This means the component could execute potentially hazardous data
 or run the component using a malicious script. This can range from utilizing a
 delete method to automatically installing a macro virus. The legal entity on the
 digital certificate will be held responsible for any malicious damage caused to the
 users system. Installation tools like Microsoft's application setup wizard require the
 author to brand a file as "Safe for Scripting" and/or "Safe for Initialization".

Arrange Licensing - Applications compiled with development tools such as
 Microsoft Visual Basic automatically incorporate component run-time licenses when
 an application is compiled. However, this does not apply when components are
 downloaded into an HTML page. If you wish to license a component for use in
 HTML then the creation of a License Package (LPK) file is required using the
 Microsoft LPKTool.exe.

Package Component - The next step is to package your component and
 dependent files into a cabinet (CAB) file. CAB files can be created using many
 installation tools such as Microsoft's application setup wizard. Typically, CAB files
 include:

 Component file (DLL, OCX or EXE)
 License file (optional)
 Dependency file (files required to run the control)
 Dependent files
 HTML page (requires LPK file)

Test Download - Test the component download on a clean version of Windows 95,
 Windows 98, Windows NT Workstation, Windows NT Server and various editions
 of Windows 2000. This will allow detection of any operating system specific
 problems. Ensure the component is not registered on the test system by running

 Regsvr32.exe using the following parameter.

 Example: RegSvr32 /u C:\MyProject\Bin\Example.dll

Sign Component - To digitally sign a component you must firstly purchase a
 certificate from a trusted organization called a Certificate Authority (CA) The
 certificate is issued once the authority has validated your identity and is digitally
 signed with a their own private key. The Internet browser using the authorities
 public key can then decrypt the certificate thus preventing third parties tampering
 with the certificate. The certificate is then applied to the component using a utility
 supplied in Microsoft's ActiveX SDK.

Component Testing
 How do I test a component? - Thorough testing is paramount to the success of a component
 being excepted in the open market. All evaluations and sample code should be tested in addition
 to the full retail product for functionality, installation and de-installation. An issue that should be
 approached with care is the dependencies referenced by your component. Most installation tools
 require the selection of the original component's project file. This allows the wizard to analyze all
 references selected at the time the component was compiled. Absence of dependent files
 referenced by other dependent files is probably the most common installation issue. This is why
 testing on a clean machine, on all operating systems and all development environments is
 imperative. If this rigorous testing process is not followed then the likelihood of damaging a
 customers system is high. Therefore, to create a clean machine you must:

 Format Hard Disk - If you only reinstall the operating system then static files that
 do not require registration may have already been installed. Therefore, without
 formatting the disk there is no guarantee that the installation will work on all
 machines.

Install Operating System - Make a note of any service packs applied as this must
 be included in the component's documentation i.e. the Readme file

Install Development Environment - Again, document any service pack
 installations. Always select the standard installation otherwise certain files may be
 missing causing erroneous errors when you test.

Test installation - Although we test the product installation thoroughly we
 recommend you also test the product to your best ability. This will ensure the swift
 progress of the component through our QA system.

Once the above steps are complete you can image the disk allowing you to re-clean your
 environment in minutes. Image applications take a snapshot of your clean system, with operating
 system and development environment installed. This prevents the long cycle of re-installing
 everything before testing can re-commence. A good practice is to allocate a hard disk per
 operating system per development environment. As several disks can be installed in one
 machine, imaging an environment provides an economical and effective solution.

Component Licensing
How do I license my component? - Unlike application licensing, few licensing utilities exist for
 component licensing. Those that currently exist often operate a 'two-phase unlock' process which
 requires manual intervention to generate the retail unlock key. However, this form of licensing
 does not suit 'mass market' adoption. The development of the C-LIC (common licensing)
 component enables authors to integrate a DLL providing a 'Try-Before-You-Buy' licensing
 solution.

a) The Common Licensing Problem
 Components sold on the open market have are typically 'Black Box' architecture. This means that
 all functionality is encapsulated and cannot be adapted by the developer except through the

 public interface. Because of this, providing an evaluation that allows the developer to 'road test' a
 component is important when securing a sale. Nowadays, customers expect one download that
 runs in evaluation mode for a set number of days. Once this evaluation has expired, functionality
 is disabled until a license key is purchased and entered, unlocking the component into a full retail
 version. Often the best form of protection is to use a reminder/nag screen that launches each
 time the calling application runs the component. This prevents users without a license from
 releasing an application into a commercial environment.

b) C-LIC - The Common Licensing Solution
 C-LIC is the ComponentSource license technology used to adapt a full retail product into an
 evaluation. However, please note the current version does not support copy protection. The C-
LIC DLL can be integrated into a majority of languages that support the creation of software
 components. Its method of working is similar to that used in application software. C-LIC was
 developed to enable component authors to create a fully or part functioning evaluation protected
 by a 'nag' screen reminding users that the component is unlicensed. The nag screen allows
 customers to browse to the relevant product page and purchase the license key used to unlock
 the product into the full retail component. The license key is provided by ComponentSource and
 is generated by our own proprietary encryption.

 C-LIC can also protect different levels of functionality. For example if your standard version has
 10 functions and your professional version 20 functions then the purchase of a standard license
 will unlock 10 functions only - the other 10 functions will remain in evaluation mode. Please Note:
 C-LIC does not provide "copy protection".

Conclusion
 Build components and enter the component market now!

 Many different companies of various sizes from around the world have already created new COM based
 components and entered the "open market". For example:

• AFD Software, UK - Components for address formatting and zipcoding/postcoding
• AppSoft, South Africa - Components for integrating accounting systems with order processing systems
• BAI, Belgium - Components for CRM and financial services organizations
• EDS, Plano, TX - Components for security, legacy data access and financial application creation

 Developer demand for components is currently outstripping supply - as a result an opportunity exists for
 experts to create components and enter the "open market" for components.

 If you have any feedback on this white paper or questions about creating commercial software components
 email us on: publishers@componentsource.com

Revision History:
First Published: February 29, 2000
 Revised: July 15, 2000 (Updated: Component Architectures; Component Languages)
 Revised: September 20, 2000 (Updated: Component Languages; Component Characteristics)
 Revised: June 24, 2003

Contributions by Steve Teixeira, CTO, Full Moon Interactive

ComponentSource

Copyright © 1996-2003 ComponentSource

mailto:publishers@componentsource.com

	Local Disk
	com.htm

